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Abstract. A generalized Langevin dynamics (GLD)
scheme is derived for (bio)macromolecules having inter-
nal structure, arbitrary shapes and a size larger than
solvent molecules (i.e. proteins). The concept of solvent-
accessible surface area (SASA) is used to incorporate
solvent effects via external forces thereby avoiding
its explicit molecular representation. A simulation algo-
rithm is implemented in the GROMOS molecular
dynamics (MD) program including random forces and
memory effects, while solvation effects enter via deriv-
atives of the surface area. The potato carboxypeptidase
inhibitor (PCI), a small protein, is used to numerically
test the approach. This molecule has N- and C-terminal
tails whose structure and fluctuations are solvent
dependent. A 1-ns MD trajectory was analyzed in
depth. X-ray and NMR structures are used in conjunc-
tion with MD simulations with and without explicit
solvent to gauge the quality of the results. All the
analyses showed that the GLD simulation approached
the results obtained for the MD simulation with explicit
simple-point-charge-model water molecules. The SASAs
of the polar atoms show a natural exposure towards the
solvent direction. A FLS solvent simulation was com-
pleted in order to sense memory effects. The approach
and results presented here could be of great value for
developing alternatives to the use of explicit solvent
molecules in the MD simulation of proteins, expanding
its use and the time-scale explored.
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1 Introduction

The formalisms of stochastic dynamics and Langevin
equations (LE) are well known [1, 2, 3, 4, 5, 6, 7]. For
instance, they have been used to derive computing
schemes to calculate molecular dynamics (MD) trajec-
tories of biomolecules by numerically simulating thermal
baths [8, 9], thereby implicitly including solvent effects
[10], and Brownian dynamics simulations of protein
folding in torsional angle space [11, 12]. The natural
extension of the LE to describe the motion of a
generalized Brownian particle, which is not necessarily
heavier than the particles of the solvent or surrounding
medium, was proposed by Mori [l] and Kubo [2].
Such formalisms, when numerically implemented and
applied to molecules having internal atomic structure
and showing any molecular shape, may provide useful
models for biomolecules immersed in various surround-
ing media and may generate information of interest to
biochemists, molecular biologists and biophysicists.
Realistic simulations of hydration effects require a
large a number of solvent molecules. For this reason, the
simulations of proteins were carried out with a special
parameter set where water was not explicitly included. We
expect that such a procedure can be improved if solvent
forces are explicitly included, while the solvent is still ex-
plicitly absent during the computation of the trajectory. In
this article, we start from a generalized LE that can be
derived from standard theory [4], where a new explicit
solvation force term is obtained which reflects the arbi-
trary shape of the subsystem of interest that is usually
concealed in the standard approach. The memory kernel,
K(t — t), is evaluated using an algorithm introduced by
Rey et al. [13]. The autocorrelation matrix of the sto-
chastic forces is related to this matrix kernel; thus, dy-
namical solvent properties are introduced via the random
force, R(t), which is then constructed by introducing at-
om-type as well as solvent-accessible-surface-area (SASA)
dependence for the atomic friction constant. The solva-
tion forces [14, 15] representing hydrophobicity effects are
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represented in a manner analogous to the approach used
by Cramer and Truhlar [16]. This type of term was pre-
viously used in a different context by Wesen and Eisenberg
[15] and by Eisenberg and McLachlan [17]. The algo-
rithms are implemented in GROMOS [18] and tested
with a MD calculation of the carboxypeptidase A (CPA)
protein inhibitor from potatoes (PCI). This protein has
structural features that are strongly solvent dependent.
Furthermore, PCI has been studied with experimental [19,
20] and computer-assisted simulation techniques [21, 22,
23, 24], so the model results can be carefully gauged.

In GROMOS, the surrounding polarization effects are
implicitly incorporated in a noninertial solvent frame-
work [25]. This is a collisionless model for the solvent and
is referred to as an in vacuo model in what follows. We
expect the generalized Langevin dynamics (GLD) ap-
proach including solvophobic effects may contribute to
improve the quality of solvation models in the protein’s
MD by including forces opposing implosion in vacuo. In
the present case, a thoroughly studied model system will
serve to gauge the quality of the atomic fluctuation pat-
terns by MD simulations carried out with and without
explicit water representation. To what extent the inclu-
sion of memory effects (frequency-dependent-friction
coeflicients) together with the inclusion of solvophobic-
like forces are sufficient to yield MD trajectories that
would allow the essential features obtained with full
solvent representation to be recovered is one basic point
to be investigated here. The results reported for the
protein used as a model, PCI, are encouraging.

2 Methods

2.1 Theoretical outline

One of the important limitations of the theory of Brownian motion,
noticed early by Einstein [26], is the divergence of the mean velocity
for indefinitely small values of the time 7. In 1930, Uhlenbeck and
Ornstein [27] proposed a model to solve this problem. The key issue
was to realize that equations such as Langevin’s for a particle or for
rotational Brownian motion are stochastic differential equations.
Doob, Wiener and others developed the theoretical basis leading to
fundamentally correct solutions (see Ref. [28], where a number of
important articles are reprinted, including Chandrasekhar’s [29]
1943 seminal article). However, it was not until 1965 that Mori [1]
and Kubo [2] gave a general result with the generalized LE.

The atomic/molecular description can conveniently be incorpo-
rated in the formalism of statistical mechanics of irreversible
processes [3]. One has to remember that the solute, from a thermo-
dynamic viewpoint, is an open system: it is exchanging energy and
momentum with the surrounding media. For practical simulations,
Eq. (1) is the starting point. The approximate time evolution
equations for the dynamical variables of the system of interest that
are used in molecular dynamics simulations have the form

Py, = 0V(rm)/0rm — 0(Vins)/0rm + R (t)
+ / tK(t — —t') - P (t)

d

(1)

P being the momentum, R the stochastic force, V the potential
energy, r the atom position and K the kernel memory, whilst sub-
scripts “m’ and “‘s” are for solute and solvent atoms, respectively.
The first term describes the intramolecular force field of the given
biomacromolecule and the second derives from the solvation free
energy. The integral of the last term goes from t" = 0 to t" = t. This
latter term should contain solvophobic forces via the modifications
suffered by the solvent probability distribution function, which is

assumed to include solute perturbations. The stochastic forces and
memory terms are the subject of particular modeling described
later.

2.2 Algorithms and definitions implemented

For proteins of arbitrary shape, the solvent-averaged interaction
term can be used to introduce particular solvation forces. This
solvation force is taken here from the derivative of the accessible
surface for the k-th atom of the m system [15, 30]:

*a<Vk5>s/al‘k = FkSOIV = *akaS/ark (2)

where the atomic solvation parameters used are those of Cramer
and Truhlar [16] and the derivatives of the accessible surface are
extracted analytically by using the Gauss—Bonet theorem [31].
From now on, the subscript m is no longer used as all the variables
are referred to this subsystem, so Vi, stands for the interaction
potential between the k-th atom in the solute interacting with the
solvent and is averaged over the solvent degrees of freedom. A
word of caution is in place here. In the original work, the param-
eters account for cavitation and dispersion effects. In our case, they
are used to differentiate, at the level of forces, the action of
hydrophobic and hydrophilic interactions. No reference to solva-
tion energies is made at this stage. We expect to test the structural
behavior of a test system that presents severe defects when simu-
lated in a vacuum.

The friction effects in the atoms’ motions have been analyzed by
Canales and Padro [32] from simulations of soft spheres using
molecular and Langevin dynamics. The study of electrolyte solu-
tions through the Langevin dynamics [33] or GLD [13] has already
been shown to be an important tool to reduce the computation
time, obtaining reliable results, while for proteins, the stochastic
dynamics [34, 35], not so commonly used, also represented an
important improvement.

The approximation used to simplify Eq. (1) is to take the K
matrix as a diagonal one: Kj; = d;; Kj(t"), with d; being the Kro-
necker delta. Following Rey et al. [13], the memory term, in the
leap-frog algorithm can hence be written as

/ K;(t — t')p,(t)dt
= (1/2)AtK;(0)p, (1)
+At{Z {Ki((1/2+9)A0 fui(e— (172 + j)At)} )

where the summation is until K has vanished and XAt is the effective
memory time [13]. In order to define the random force the following
postulates are made:

1. Only one random force can be applied for each step on one
atom if this is accessible to the solvent.

2. The strength of the random force is modeled with a Gaussian
distribution that fulfills the second theorem of fluctuation—dissi-
pation, the mean and the standard deviation for an atom ““i”” on the
x-axis being defined as

(Ryi) =0 (4)

This property follows from the neglect of correlations between both
subsystems. The kinetic energy of the N-atom system is given by
(1/2PT(t) - M™' - P(t), where M is now the diagonal matrix con-
taining the masses of the atoms in block form, so the three atom
degrees of freedom have the same mass value. On average, the
kinetic energy (1/2)PT(0) - M™" - P(0) = 3N kgT/2 corresponds to
thermal equilibrium. For the i-th atom

(Ryi(0)Ri(0)) = m; 7y kg To (5)

T, is the temperature at which the system should be kept. The
friction constant is taken to be anisotropic (4 ) and it has been
provided to fulfill the following conditions (these conditions have
been arbitrarily defined in order to use the random force to keep the
temperature of the system by small perturbations):

a. Dependence on the accessible surface area of the Datom (the
largest area implies the largest friction).



b. Dependence on the atom type and its interaction with the
solvent.

c. Dependence on the difference of temperature between the
system and the bath.

3D
1

3. The direction of the random force on an atom
upon its velocity and the temperature of the system:
When T — T,<0

depends

if m;!|p,|* — 3kT, < 0, then R; increases the momentum,
if mi_l‘pi‘z— 3kT, > 0,then R; = 0 .

When the bath is colder than the molecule, T-T, > 0

if m!|p,|* — 3kT, < 0, then R; decreases the momentum,
if m~'|p,)> — 3kT, > 0,then R; = 0 .

4. To complete the definition of the random force we define y in
agreement with the second and third postulates. Given a F ., to be
the maximum strength at atom ‘i produced by the electrostatic
force of a ghost water-molecule-dipole located at the minimum of
the attractive van der Waals distance between the center of atom
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i”” and the water oxygen, )y is defined as
7 = (/DT = To))'*(SiFmar/7p) (6)

S being the accessible surface and S, the projection on the x-axis, and
7 is defined as the relaxation time [8], which is taken here to be 0.1 ps.
p;i 1s the van der Waals radius of the i-th atom increased by the radius
of a water molecule. The projection of the surface area on the Car-
tesian axis is obtained with the numerical algorithm of GEPOL [36].

Therefore, the instantaneous solvent force is randomly applied
to those atoms accessible to the solvent until the temperature of the
system becomes closest to T, or a random force has been applied
for all the atoms with no no solvent-accessible surface. Moreover, if
the temperature of the system is already close to T, the strengths of
the random forces are small and are even zero when T = T, (where
no random force has to be applied). The correlation function of the
force R is calculated at each step of the simulation and the memory
function K is calculated from:

Ky = (Ryi(0)Ri(1))/3ky T, )

with analogous expressions for the y- and z-axes. For the initial
steps of a given simulation the memory is set to zero until mean-
ingful correlations of the force R can be obtained. At this stage, one
point may produce some misunderstanding. The stochastic force
(magnitude and direction) does not entirely come from changes on
the surface accessible area of the protein atoms. The algorithms
used to construct it contain dynamical information on solvent
molecules as well as force strength (Fj.x). The colored memory will
act locally to damp large velocities that a given atom may acquire;
however, as the atom is included in a large body with mobile do-
mains, these latter may move and so the viscous forces will also
tend to stop such motions. Regions belonging to mobile parts of a
biomolecule may then develop large fluctuations without collapsing
onto the core of the biomolecule. Such effects cannot be simulated
with simple solvent-accessible-surface effects only.

GROMOS with D4 parameters for the potential-energy
function was used for the simulation [21, 22]. The cutoff for
the nonbonding potential energy was 8§ A, without use of a
switching function, and for the long-range interactions a cutoff of
13 A and a 2-fs time step were used in the integration, and the bond
lengths were constrained by SHAKE [37]. The temperature was set
at 3000 K and maintained by the random forces (see earlier).
Special care was taken to generate a low-(negative-) energy con-
formation to initiate the GLD calculations. A 1800 step of steepest
descent energy optimization was carried out with the structure;
bond lengths were not constrained in the optimization. The GLD
calculations were carried out on a Silicon Graphics Origin 2000 of
CESCA. The program GROMOS [18] was modified for this study.

The D4-parameter model corresponds to an electroneutral
protein. The initially charged groups are neutralized by using the
concept of charge polarization [25]. In this manner, the solvent
collision effects are absent, while implicit solvent polarization
effects are taken into account as potentially charged groups are
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neutralized. This model is referred to as the in vacuo approach. The
results obtained by us with in vacuo on PCI have shown severe
limitations in representing the most mobile part of the structure,
namely, the N and C terminal domains [21]. This is a case where
one may strongly suspect the need for solvent friction effects. In
fact, several MD simulations of proteins with the solvent repre-
sented with discrete simple-point-charge (SPC) [38] water molecules
have shown that the collective motions of protein regions [39, 40,
41], above all those in contact with solvent, have a high friction
with respect to the movement in a simulation without explicit sol-
vent [39, 42]. The PCI system is then an appropriate candidate to
test the qualities of the GLD approach. An auxiliary frictionless
(FLS) simulation, where the last term of Eq. (3) is omitted, was run
in order to sense the effect of the friction. This also provides a test
for the modeled solvophobic forces on the system on the basis of
the derivative of the free energy.

2.3 The protein system

The X-ray crystallographic coordinates [19] of the PCI-I1a isoform
[43] (the major one for such a protein) in a complex with CPA are
used to seed the GLD simulation of the PCI. The molecular model
is identical to the one extensively studied by Oliva and coworkers
[21, 22, 23, 24]. From the model, the N terminal residue Glul is
removed together with the C terminal residue Gly39. For some
isoforms the former is lacking, while the latter is cut out from PCI
in its complex with CPA. The structure of PCI wild type presents
three domains: the core, the N tail and the C tail. The core is
defined from residues Cys8 to Cys34, the N tail from residues Gln2
to Ile7 and the C tail from Gly35 to Val38. The NMR conforma-
tion of isolated PCI [20] is totally compatible with the extended
form found in the PCI-CPA complex and it will be used for the
sake of comparison between experimental (NMR plus X-ray data)
and modeled (by means of simulations) systems. The regions de-
scribed earlier will be analyzed by the root mean square (RMS)
fluctuations and the RMS deviation (RMSD) fluctuations [23] and
compared to the experimental structures (X-ray and NMR [20])
and to the MD models previously obtained for the solvated system
[23, 24] and for the nonsolvated system [21, 22].

3 Results and discussion

3.1 Estimators for the equilibrium time
and memory function approach

The calculation of the memory function as in Eq. (7) is
very time consuming, mainly owing to the correlation
function on a long time scale. Therefore, assuming a
rapid decay of the memory function [4, 13], this can
be expressed as an exponential function (K (t) =
K e (7%)/7) with relaxation time t [13]:

o0

T= / (Ri(to) - Ri(t)) dt/(Ri(to) - Ri(to)) (8)
to

where the integral is taken here for t, =0, but, in
practice, as the trajectory proceeds different t, are used
as initial points. For a stationary system, (Rj(t,) - Ri(t))
is independent of the time origin. In order to know how
long it takes for the GLD simulation to give stationary
values of the memory function (hereafter defined as
equilibrium time), two estimators were used: one for the
relaxation time (®) and other for K, ({), defined as

O(to) = \/ (/N (ﬁ(to>_ﬂ<oc>)2
(o) = VI/N) D (Kioi = Kui)”
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where t, varies parametrically and the values at infinite
time are taken from the last point in the given
calculation (t 100 ps). The sum is over all atoms having
nonzero solvent accessibility surface. The representation
of both estimators has to show asymptotic behavior,
from which the equilibrium time (co) can be extracted
for the model (i.e., |0©| and |0(| being smaller than a
given ¢ > 0, or by visual inspection of the graphic).
With this approach the integral coefficients of Eq. (7)
can be taken from the values of the memory function at
the equilibrium time and the correlation function of the
random force is not numerically estimated again,
thereby saving much computational time.

For the 1-ns trajectory of PCI reported here (see la-
ter), these two parameters behave as shown in Fig. la.
The representation of the two estimators ® and { shows
that the stationary position is achieved around 80 ps of
GLD simulation. Both estimators present curves as-
ymptotically approaching zero. The perfect equilibrium
is achieved when both estimators are equal to zero.

Nevertheless, this would imply that only an infinite time
of simulation should be taken as the correct equilibrium
time; therefore, the limit for the equilibrium for ©
is taken at ¢ = 10 and for { the corresponding threshold
is taken as ¢ = 0.2. The values of K, (t) are taken from
the results of the GLD simulation obtained at the 100-ps
step. Between 100 ps and 1 ns the memory functions
obtained for each atom were used for the simulation and
the correlation of the random forces was not calculated
again. Note that at the beginning of a trajectory, the
memory function is set to zero, so the solvent dragging
effects appear with a delay that is short when compared
with the 100-ps trajectory length.

The average dynamical aspects of the method are
considered satisfactory. Kinetic energy (temperature
coupling) is maintained here by the effect of random
forces and not by using Berendsen’s algorithm. This
leads to fluctuations that are larger than those obtained
with a Berendsen bath. The largest fluctuation is around
+ 15 kJ/mol (approximately 5 K) and in the equilibrium
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N-tGin 1 a Estimators of the equilibrium for the memory
0.2 N T function. The thin line represents the K(0) estima-
"o 0,02 0,04 0,06 0,08 0.1 tor and the thick line the relaxation time estimator.
. b Atom stochastic force correlation functions. Oxt
b time (ps) is the oxygen atom at the C terminal residue Val38



section of the trajectory maintains an average tempera-
ture of 287.6 K, about 3 K difference with respect to
the targeted T, = 300 K. These results suggest that the
system is reasonably well equilibrated with respect to
the thermal bath (although not necessarily equilibrated
with respect to the accessible configurational space [44]).

The individual atoms accessible to solvent interac-
tions have a different history. At time t = 0 (when the
trajectory calculation is initiated) they have a K(t — t")
equal to zero. Thereafter, the data are saved and
K(t — t") becomes different from zero. The time depen-
dence of the stochastic force correlation, used to calcu-
late K is plotted for selected atoms in Fig. 1b: one from
the C tail, another from the N tail and two engaged in
residues belonging to the protein core (two cysteines).
The exponential decay is quite apparent. The atoms
belonging to highly mobile regions (tails) decay faster
than those found in zones showing collective fluctuations
(core). Figure la shows an average property of the
protein, while the curves of Fig. 1b represent the solvent
effects on short time scales for single atoms.

3.2 Structure, energy and fluctuation behavior

The global structural results of the simulation are
qualitatively summarized in Fig. 2, where a series of
snapshots are overlayed. The first 100 psis discarded. The
inclusion of surface-mediated effects yields a picture that is
very similar to the simulations with the explicit water SPC
representation (psW simulation). Both the N tail and the C
tail fluctuate around regions populated by the real system
as can be inferred from the X-ray and NMR structures.

The standard way to sense the stationary position in a
MD trajectory is to study the time series for various
energy entries. This is also an issue here, in particular if
we take into account that the model is also a represen-
tation of a thermal bath.

3.2.1 Potential energy

The time series of the potential energy are shown in
Fig. 3. A close analysis shows that the protein becomes

N-tail

Binding Site

C-tail

X-ray

GLD[100ps-1ns]
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equilibrated after 500 ps, with an energy of about
=715 kJ/mol. The main energetic components are the
electrostatic (—1184 + 23 kJ/mol) and the van der
Waals (=712 £ 41 kJ/mol) energies. The effect of the
random forces produces several tensions which are
reflected in the energy of the angles (671 + 12 kJ/mol
for bending, 276 + 13 kJ/mol for dihedrals and
242 £ 7 kJ/mol for improper dihedrals). The total
fluctuation of the system is about 37 kJ/mol between
100 ps and 1 ns, the largest fluctuations being found for
the van der Waals interaction (about 6% of its energy)
and the bending energy (about 4%).

All in all, the system, under the solute—solvent cou-
plings, displays stationary behavior. Given that a new
thermal bath is implied in the present approach, the
kinetic energy is to be checked now. The algorithms
taking care of the solvent also had to answer for thermal
equilibration. The stationary position of these entries
can be appreciated from Fig. 3. This result is important
since no Berendsen bath is used here. The first stringent
test is then fulfilled satisfactorily.

3.2.2 RMS fluctuations

The GLD simulation gives rise to a stationary average
structure in the 100-ps—1-ns time window of the
trajectory. Accordingly, atomic fluctuations along the
three main axes of the fluctuation were calculated for
this time average. The GLD B factors derived from the
matrix of the atomic fluctuations [23] were calculated for
the C o atoms of PCI (Fig. 4). For the C tail the B factor
is around 60 A2, which seems to correlate with the CPA
docking and inhibitory function of PCI [21, 23] that
requires the necessary mobility of the C tail while
still keeping the conformational orientation. In vacuo
simulations (absence of solvent collisions and viscosity),
N and C tails end up folding onto the core to a great
extent. On the other hand, the N-tail conformation
became stabilized after 100 ps and presented the largest
B factor of the system (about 400 A?). The differences
with respect to the X-ray structure correlate with the
crystal contacts and CPA-PCI contacts analyzed by
protein engineering, as reported elsewhere [41].

Fig. 2. Ribbon image-plate of the
3D models of potato carboxypepti-
dase inhibitor (PCI). Left: PCI X-
ray structure showing the three main
regions: N tail, core and C tail (see
text). Right: several conformations
of PCI along the generalized
Langevin dynamics (GLD) simula-
tion taken in snapshots of 50 ps
between 100 ps and 1 ns. The imag-
es were obtained with PREPI, kindly
provided by Dr. Suhail (http://bon-
sai.lif.icnet.uk)
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Fig. 4. Comparison of Co atomic fluctuations of PCI. Crystallo-
graphic B factors (thick line) of the Co atoms of PCI are shown with
the simulated B factors of the in vacuo model (dashed line), the
explicit water single-point-charge (psW) model (squares) and the
GLD simulation (circles)

3.2.3 RMSD with respect to the X-ray
and NMR structures

The averaged RMSDs of the backbone and whole set of
atoms of PCI between 100 ps and 1 ns are shown
in Table 1. The averaged deviations with respect to
the experimental structures of PCI (NMR and X-ray
structures) are also shown. The auxiliary simulation with
FLS is added to sense the effects of the memory. The
experimental coordinates for X-ray and NMR were
averaged and are denoted as (Exp). The RMSD is about
3.2 A when main-chain atoms for the whole protein are

1. The in-solvent (psW) model containing explicit water
molecules [24] with a corrected solute—solvent pa-
rameter GROMOS force field (C4).

2. A MD model of PCI simulated without explicit
solvent [21, 23] using a D4 GROMOS force field (in
vacuo).

3. A FLS model derived from the GLD algorithm by
eliminating the memory contribution.

Several physical properties analyzed in these MD
simulations were compared. First of all, the RMSD
(Table 1) with respect to the psW is much smaller for the
whole protein when compared to the in vacuo and FLS
structures. This suggest that our attempt to simulate the
explicit solvent with GLD is satisfactory, although it is
certainly not perfect. The comparisons with the average
obtained for simulations in vacuo show larger differenc-
es, except for the main chain and all-atom core. This
situation is encountered again when the FLS run is
compared to the average GLD.

The computing time (R8000 processor of Silicon
Graphics Indigo Power?) for the different simulations of



Table 1. Comparison of the root-mean-square deviation(RMSD)
for different regions and models of carboxypeptidase inhibitor
(PCI). The regions considered are the whole PCI, the core of PCI
and the C and N terminal tails of PCI, and the RMSD is calculated
either for all the atoms or for only the main-chain atoms (Ca, N
and C). X-ray and NMR are the experimentally known structures
of PCI, while (Exp) is the set constituted by both. GLD, in vacuo
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and psW are the conformations obtained from the optimization
of the average conformation obtained for generalized Langevin
dynamics (GLD), in vacuo and explicit water single-point-charge
(psW) simulations, respectively. denotes the set of snapshots taken
each 10 ps from the GLD simulation between 100 ps and 1 ns and
(MD) denotes the set constituted by psW and in vacuo conforma-
tions. The simulation with frictionless solvent (FLS) is also included

S Whole PCI RMSD (A) PCI core RMSD (A) PCI C tail RMSD (A) PCI N tail RMSD (A)
Main chain  All atoms Main chain  All atoms Main chain  All atoms Main chain  All atoms
GLD-X-ray 3.20 4.62 2.00 3.40 0.98 1.54 2.59 4.44
GLD-NMR 3.22 4.11 1.85 3.09 0.86 1.49 1.65 2.64
GLD-psW 2.37 3.43 2.19 3.42 0.79 1.27 1.10 2.74
GLD-in vacuo 2.97 4.05 1.67 2.44 2.33 3.76 3.21 4.94
GLD-(Exp) 3.21 £ 0.01 436 £ 025 193 £0.08 325+ 0.16 092 + 0.06 1.52 £ 0.03 2.12 + 0.47 3.54 + 0.90
GLD-(MD) 2,67 £ 030 3.74 £ 031 193 £ 026 293 £049 156 =+ 0.77 251 £ 1.25 2.16 £ 1.05 3.84 £ 1.10
GLD-(Exp) 2,66 £ 0.37 388 + 044 148 +£ 049 2.63 £ 043 1.13 £ 0.6 2.87 + 143 2.19 £ 025 3.59 £ 0.12
(GLD)-X-ray 3.30 + 0.32 2.01 £ 0.17 0.69 £ 0.20 2.28 £ 0.10
(GLD)-NMR 2.86 £ 0.39 2.05 + 0.45 0.57 £ 0.22 1.18 £ 0.15
(GLD)-GLD 1.67 £ 0.52 1.42 £ 045 0.60 £ 0.28 0.70 £ 0.27
Table 2. Computation time comparison. Simulation times re- N-t
quired to calculate simulations of PCI: FLS; psW (with explicit e )
solvent); in vacuo; GLD, (GLD simulation during the first 100 ps =7 R, Fo=tm AT Nt
in which the memory kernel parameters are calculated); and GLD¢ A S ey =
(GLD simulation where the kernel memory is taken from the first . /"'Ql - —Q\&r e
100 ps) g 3
) : a: X-ray b: NMR
Number Time step  Number Computation
of steps (fs) of atoms time (s)

In vacuo 500 2 349 291 — e

PsW 500 2 5376 8724 ==

FLS 500 2 349 519 4,'\] =R

GLD, 500 2 349 53567 L# N

GLD; 500 2 349 3171

PCI that are considered for comparison are given in
Table 2. The computational time measured to calculate
the GLD simulation and the memory function (GLDj in
Table 2) is far larger than for the simulation with explicit
solvent (psW). Nevertheless, after the equilibrium has
been achieved and by using the representation of the
memory kernel obtained, the GLD simulation is faster
(GLDg¢ in Table 2). The number of atoms used in the
simulations is the same for all, except for simulation
psW (that increases the number of atoms because of
explicit water molecules).

Simplified representations of the 3D-modeled struc-
tures of PCI are shown in Fig. 5. These were obtained
by optimization of the averaged structures extracted
from the equilibrium time window of MD simulations
with discrete solvent (psW) with the GROMOS D4
force field (in vacuo) and the GLD simulation (GLD).
Remarkable conformational differences are observed
between the in vacuo and the X-ray structures, while
the conformations of the psW and GLD models are
in better agreement with both experimental structures
(X-ray and NMR). Taken together with the snapshots
displayed in Fig. 2, the inclusion of memory and
stochastic forces effects to represent the solvent can be
considered as satisfactory.

d: in solvent

e: GLD

Fig. 5a—e. Simplified representation of the 3D molecular models of
PCI. a PCI X-ray structure; b PCI NMR structure; ¢ average
conformation of in vacuo simulation; d average conformation of
the psW simulation; and e the average conformation of the GLD
simulation

3.2.5 Energy

As noted earlier, the protein’s kinetic energy is well
maintained in the MD and GLD simulations. Some
energy results are compared in Table 3. The total
potential energy of the protein showed a large fluctua-
tion for the psW model due to the flux of energy towards
the solvent [24]. This effect can also be found in the GLD
simulation, the fluctuation being 5% with respect to an
averaged energy of about —715 kJ/mol. Therefore, the
friction and random forces identified in the generalized
LE yield a virtual effect that simulates the energy flux.
The total potential energy calculated with the GROMOS
force field [18] for the optimized averaged conformation
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Table 3. Protein potential-energy components of simulated and
experimental models of PCI. Electrostatic and van der Waals
energies of the optimized conformations of the experimental
structures and the models obtained from simulation. The X-ray

and NMR structures are taken for the experimental set of
structures, and the averaged conformations of the in vacuo, psW,
FLS and GLD for the models are obtained from their respective
simulations

X-ray NMR In vacuo psW GLD FLS
Total potential (kJ/mol) —-1893.0 -1915.0 -2262.9 -2026.3 -2136.2 -2175.9
Electrostatic (kJ/mol) -1259.8 —-1245.6 —-1461.0 —-1300.0 —-1395.0 —-1404.0
van der Waals (kJ/mol) -1274.6 —-1323.6 —-1408.0 —-1287.0 -1319.0 -1372.0

Table 4. Comparison of solvent-accessible surface areas (SA4SA).
Total solvent-accessible surface areas of PCI and its decomposition
into the area due to nonpolar and polar atoms for the optimized
experimental structures (X-ray and NMR) and the optimized
conformation of the models obtained from simulation (in vacuo,
psW, FLS and GLD)

X-ray NMR Invacuo psW GLD FLS
Total 2787 2636 2397 2817 2727 2557
SASA (nm?)
Nonpolar 17.68 17.66 17.83 17.05 17.02  17.29
SASA (nm?)
Polar 10.19 8.7 6.14 11.12 1024 828
SASA (nm?)

in the equilibrium time window (100 ps—1 ns) of the
GLD model was —2136 kJ/mol, while for both MD
models, psW and in vacuo, the energies were —2026 and
—2262 kJ/mol, respectively. This difference confirms that
the conformational space scouted by the GLD simula-
tion is within the ranges of the in vacuo and psW
simulations. Moreover, the ranges obtained are mainly
due to the electrostatic and van der Waals energies
(Table 3). From the energetic side, it can be said that the
GLD results mimic those obtained with the explicit
water simulation (psW).

3.2.6 Solvent-accessible surface area

Table 4 gives the SASA for the averaged and optimized
conformations in the equilibrium of the GLD, in vacuo,
psW and FLS simulations, these being compared with
the SASA calculated for the NMR and X-ray structures.
As shown in Table 4, there are small differences in the
SASA between the two sets of experimental coordinates.
The nonpolar contribution dominates over the polar
atoms and the X-ray structure appears to have a little bit
more SASA, although for nonpolar atoms both (X-ray
and NMR) have the same values. The differences appear
for the polar ones. Interestingly, the NMR structure
appears to ‘“‘hide” more polar atoms than the X-ray
structure if this latter were to survive in solution
dissociated from CPA. The results of simulations in
vacuo, where the structure tends to implode, show a
decrease in the SASA of the polar atoms below the
NMR value. The nonpolar atoms always appear to have
the same SASA, irrespective of the data generation.
The effect of water is clearly shown by an increase in the
SASA of the polar atoms, while the SASA of the non-
polar atoms is conserved. The GLD SASA for the polar
atoms is smaller compared to the psW simulation, while

it shows a good correlation with the X-ray data. The
effect of the memory function can be sensed from the
FLS results. The SASA of the polar atoms moves
towards the in vacuo simulation. One can clearly see that
it makes a difference to have a memory function in the
simulation or not.

4 Conclusions

A GLD method has been developed and applied to the
study of a protein system. A specific algorithm was
developed in order to define the stochastic random force
and to keep the system at constant temperature. The
main objective was to achieve a methodology that is able
to reproduce the physical properties obtained by a MD
simulation with explicit solvent by using external forces
whose form is derived from the general theory. Besides
the fact that computing time may be saved, particularly
at long times and for large systems, the success of such a
strategy may help the development of further refined
computational programs for studying surrounding-
medium effects of varying complexity on large biomol-
ecules. From the exhaustive analyses presented here,
the feasibility of such an endeavor may be concluded.
The results are far from being perfect, particularly for
the flexible parts of proteins; however, if we consider the
possibility of simulating, for instance, a membrane-
surrounding medium or any other specific solvent at
different temperatures and pressures, procedures such as
the GLD may produce reliable results.

The method presented here, compared to simulations
with explicit solvent, will speed the simulation of large
protein-solvated systems. This is because the increase in
the number of protein atoms involves a large increase
in the number of surrounding water molecules (i.e., a
globular protein molecule of about 300 residues, such as
CPA, has to be embedded in about 50,000 water mole-
cules); therefore, the number of interactions to be cal-
culated increases exponentially in the presence of water,
while for the GLD simulation the lack of explicit water
molecules reduces exponentially the number of calcula-
tions for nonbonded atom—atom interactions. On the
other hand, the algorithm can be modified in order to
perturb the system by changing some of the parameters
used to calculate the random force. This perturbation
can be used to obtain the simplest way to explore a
simulated unfolding under “hydrophobic™ conditions or
in high-viscosity media. Besides, the method uses the
random force to perturb the system and maintain the
temperature, while the system itself is maintained by



frictional forces that do not constrain the conforma-
tional space. This implies that the configurational space
can be explored fast and securely with neither disturbing
additional elements (such as high temperature or addi-
tional dimensionality) nor experimental constraints
(such as distance constraints from NMR or an electron
density map from X-ray studies).
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